Cotton Defense Induction Patterns Under Spatially, Temporally and Quantitatively Varying Herbivory Levels
نویسندگان
چکیده
In its defense against herbivores, cotton (Gossypium sp.) relies in part on the production of a set of inducible, non-volatile terpenoids. Under uniform damage levels, in planta allocation of induced cotton terpenoids has been found to be highest in youngest leaves, supporting assumptions of the optimal defense theory (ODT) which predicts that plants allocate defense compounds to tissues depending on their value and the likelihood of herbivore attack. However, our knowledge is limited on how varying, and thus more realistic, damage levels might affect cotton defense organization. We hypothesized that the allocation of terpenoids and densities of terpenoid-storing glands in leaves aligns with assumptions of the ODT, even when plants are subjected to temporally, spatially and quantitatively varying caterpillar (Heliothis virescens) damage. As expected, cotton plants allocated most of their defenses to their youngest leaves regardless of damage location. However, defense induction in older leaves varied with damage location. For at least 14 days after damage treatments ended, plants reallocated defense resources from previously young leaves to newly developed leaves. Furthermore, we observed a positive hyperbolic relationship between leaf damage area and both terpenoid concentrations and gland densities, indicating that cotton plants can fine-tune defense allocation. Although it appears that factors like vascular constraints and chemical properties of individual defense compounds can affect defense levels, our results overall demonstrate that induced defense organization of cotton subjected to varying damage treatments is in alignment with key assumptions of the ODT.
منابع مشابه
Nitrogen and water affect direct and indirect plant systemic induced defense in cotton
Plants have direct and indirect constitutively produced and inducible defenses against herbivores and pathogens, which can substantially aid in their ability to defend themselves. However, very little is known about the influence of agronomic factors on such defenses. Here, we tested the effects of nitrogen levels and water availability on the ability of cotton plants to deter feeding by Spodop...
متن کاملDynamic transcriptome analysis and volatile profiling of Gossypium hirsutum in response to the cotton bollworm Helicoverpa armigera
In response to insect herbivory, plants emit elevated levels of volatile organic compounds for direct and indirect resistance. However, little is known about the molecular and genomic basis of defense response that insect herbivory trigger in cotton plants and how defense mechanisms are orchestrated in the context of other biological processes. Here we monitored the transcriptome changes and vo...
متن کاملSpodoptera exigua modulates gossypol biosynthesis in cotton Gossypium hirsutum
Cotton plants induce high levels of gossypol in response to herbivore damage. However, little is known about the mechanisms by which insect herbivory modulates gossypol biosynthesis in cotton plants. Here, we report the mechanism by which herbivore damage or insect-originated elicitors modulate the biosynthesis of gossypol and jasmonic acid (JA) in plants. Spodoptera exigua larval-damaged (HD) ...
متن کاملSuppression of Jasmonic Acid-Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis
The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017